B) moving genomsnittet modeller


Autoregressiva rörliga medelfelprocesser (ARMA-fel) och andra modeller som innefattar felaktigheter kan beräknas med hjälp av FIT-satser och simuleras eller prognoseras med hjälp av SOLVE-satser. ARMA-modeller för felprocessen används ofta för modeller med autokorrelerade rester. AR-makro kan användas för att specificera modeller med autoregressiva felprocesser. MA-makro kan användas för att specificera modeller med felaktiga felprocesser. Autoregressiva fel En modell med första ordningens autoregressiva fel, AR (1), har formen medan en AR (2) felprocess har formen och så vidare för högre orderprocesser. Observera att s är oberoende och identiskt fördelade och har ett förväntat värde på 0. Ett exempel på en modell med en AR (2) - komponent är och så vidare för processer med högre order. Till exempel kan du skriva en enkel linjär regressionsmodell med MA (2) glidande medelfel som MA1 och MA2 är de rörliga genomsnittsparametrarna. Observera att RESID. Y definieras automatiskt av PROC MODEL, eftersom ZLAG-funktionen måste användas för MA-modeller för att styra rekursionen av lagren. Detta säkerställer att de fördröjda felen startar vid noll i lagfasningsfasen och sprider inte saknade värden när fördröjningsperiodens variabler saknas och det säkerställer att framtida fel är noll snarare än att missa under simulering eller prognos. För detaljer om lagfunktionerna, se avsnittet Laglogik. Denna modell som skrivs med MA-makroen är som följer: Allmän form för ARMA-modeller Den allmänna ARMA-processen (p, q) har följande formulär En ARMA (p, q) modell kan specificeras enligt följande: där AR i och MA j representerar De autoregressiva och rörliga genomsnittsparametrarna för de olika lagren. Du kan använda namnen du vill ha för dessa variabler, och det finns många likvärdiga sätt att specifikationen kan skrivas. Vector ARMA-processer kan också beräknas med PROC MODEL. Exempelvis kan en tvåvariabel AR (1) - process för fel av de två endogena variablerna Y1 och Y2 specificeras enligt följande: Konvergensproblem med ARMA-modellerna ARMA-modeller kan vara svåra att uppskatta. Om parametrisuppskattningarna inte ligger inom det rätta intervallet, ökar de återstående termerna för rörliga genomsnittsmodeller exponentiellt. De beräknade resterna för senare observationer kan vara mycket stora eller kan överflöda. Detta kan hända antingen för att felaktiga startvärden användes eller för att iterationerna flyttade bort från rimliga värden. Vård bör användas vid val av startvärden för ARMA-parametrar. Startvärden på 0,001 för ARMA-parametrar fungerar vanligtvis om modellen passar data väl och problemet är välkonditionerat. Observera att en MA-modell ofta kan approximeras med en AR-modell med hög ordning och vice versa. Detta kan resultera i hög kollinearitet i blandade ARMA-modeller, vilket i sin tur kan orsaka allvarliga felkänslor vid beräkningarna och instabiliteten hos parametrisuppskattningarna. Om du har konvergensproblem när du beräknar en modell med ARMA-felprocesser, försök att uppskatta i steg. Använd först ett FIT-uttalande för att bara beräkna strukturparametrarna med ARMA-parametrarna som hålls noll (eller till rimliga tidigare uppskattningar om det finns tillgängligt). Använd sedan ett annat FIT-uttalande för att bara uppskatta ARMA-parametrarna, med hjälp av strukturparametervärdena från den första loppet. Eftersom värdena för de strukturella parametrarna sannolikt kommer att ligga nära sina slutliga uppskattningar, kan ARMA-parameterns uppskattningar nu konvergeras. Slutligen, använd ett annat FIT-uttalande för att producera simultana uppskattningar av alla parametrar. Eftersom parameterns initialvärden sannolikt kommer att ligga ganska nära sina slutliga gemensamma uppskattningar, bör uppskattningarna konvergeras snabbt om modellen är lämplig för data. AR Initiala villkor De första lagren av felvillkoren för AR (p) - modeller kan modelleras på olika sätt. De autoregressiva felstartsmetoderna som stöds av SASETS-procedurer är följande: villkorliga minsta kvadrater (ARIMA och MODEL-procedurer) ovillkorliga minsta kvadrater (AUTOREG, ARIMA och MODEL-procedurer) högsta sannolikhet (AUTOREG, ARIMA och MODEL-procedurer) Yule-Walker (AUTOREG Endast proceduren) Hildreth-Lu, som tar bort de första p-observationerna (endast MODEL-proceduren) Se kapitel 8, AUTOREG-proceduren, för en förklaring och diskussion om fördelarna med olika AR (p) startmetoder. CLS, ULS, ML och HL initialiseringar kan utföras av PROC MODEL. För AR (1) fel kan dessa initialiseringar framställas som visas i tabell 18.2. Dessa metoder är ekvivalenta i stora prover. Tabell 18.2 Initialiseringar utförs av PROC MODEL: AR (1) FEL De inledande tecknen på felvillkoren för MA (q) modeller kan också modelleras på olika sätt. Följande felaktiga startparametrar för glidande medel stöds av ARIMA - och MODEL-procedurerna: villkorliga minsta kvadrater villkorliga minsta kvadrater Den villkorliga minsta kvadreringsmetoden för att uppskatta glidvillkor för glidande medel är inte optimal eftersom den ignorerar startproblemet. Detta minskar effektiviteten av uppskattningarna, även om de förbli objektiva. De initiala fördröjda resterna, som sträcker sig före datas början, antas vara 0, deras ovillkorliga förväntade värde. Detta introducerar en skillnad mellan dessa residualer och de generaliserade minsta kvadratresidanserna för den rörliga genomsnittliga kovariansen, som, till skillnad från den autogegrativa modellen, fortsätter genom datasatsen. Vanligtvis konvergerar denna skillnad snabbt till 0, men för nästan oföränderliga rörliga medelprocesser är konvergensen ganska långsam. För att minimera detta problem borde du ha mycket data, och de rörliga genomsnittliga parametervärdena borde ligga inom det inverterbara intervallet. Detta problem kan korrigeras på bekostnad av att skriva ett mer komplext program. Otillräckliga minsta kvadrater uppskattningar för MA (1) processen kan produceras genom att ange modellen enligt följande: Flyttande medelfel kan vara svår att uppskatta. Du bör överväga att använda en AR (p) approximation till den rörliga genomsnittliga processen. En rörlig genomsnittsprocess kan vanligtvis vara väl approximerad av en autoregressiv process om data inte har blivit utjämnade eller avvikit. AR Macro SAS-makro AR genererar programmeringsanvisningar för PROC MODEL för autoregressiva modeller. AR-makroen är en del av SASETS-programvaran, och inga speciella alternativ behöver ställas in för att använda makroen. Den autoregressiva processen kan appliceras på strukturella ekvationsfel eller själva endogena serierna. AR-makro kan användas för följande typer av autoregression: obegränsad vektorautoregression begränsad vektorautoregression Univariate Autoregression För att modellera felet i en ekvation som en autogegressiv process, använd följande uttalande efter ekvationen: Anta exempelvis att Y är en linjär funktion av X1, X2 och ett AR (2) fel. Du skulle skriva denna modell enligt följande: Samtalen till AR måste komma efter alla ekvationer som processen gäller. Den föregående makrouppkallingen, AR (y, 2), ger de uttalanden som visas i LIST-utgången i Figur 18.58. Figur 18.58 LIST Alternativutgång för en AR (2) - modell PRED-prefixade variabler är temporära programvariabler som används så att resterna av resterna är de korrekta resterna och inte de som omdefinieras av denna ekvation. Observera att detta motsvarar de uttalanden som uttryckligen skrivits i avsnittet Allmän Form för ARMA-modeller. Du kan också begränsa de autoregressiva parametrarna till noll vid valda lags. Om du till exempel vill ha autregressiva parametrar på lag 1, 12 och 13 kan du använda följande påståenden: Dessa uttalanden genererar utgången som visas i Figur 18.59. Figur 18.59 LIST Alternativutgång för en AR-modell med Lags på 1, 12 och 13 MODEL-procedurlistan för kompilerad programkodsförklaring som analyserad PRED. yab x1 c x2 RESID. y PRED. y - FAKTIV. J. ERROR. y PRED. y-y OLDPRED. y PRED. y yl1 ZLAG1 (y-perdy) yl12 ZLAG12 (y-perdy) yl13 ZLAG13 (y-perdy) RESID. y PRED. y - AKTUELL. JUL ERROR. y PRED. y - y Det finns variationer på den villkorliga minsta kvadratmetoden, beroende på om observationer i början av serien används för att värma upp AR-processen. Som standard använder AR-villkoret minst kvadratmetoden alla observationer och antar nollor för de första lagren av autoregressiva termer. Genom att använda M-alternativet kan du begära att AR använder istället den ovillkorliga minsta kvadraten (ULS) eller maximal sannolikhet (ML) - metoden. Exempelvis ges diskussioner om dessa metoder i avsnittet AR Initial Conditions. Genom att använda MCLS n-alternativet kan du begära att de första n-observationerna används för att beräkna uppskattningar av de initiala autoregressiva lagren. I det här fallet börjar analysen med observation n 1. Till exempel: Du kan använda AR-makroet att tillämpa en autoregressiv modell på den endogena variablen, istället för att felfunktionen, genom att använda TYPEV-alternativet. Om du till exempel vill lägga till de fem övergångarna av Y till ekvationen i föregående exempel kan du använda AR för att generera parametrarna och lags genom att använda följande påståenden: De föregående stegen genererar utgången som visas i Figur 18.60. Figur 18.60 LIST Alternativutgång för en AR-modell av Y Denna modell förutsäger Y som en linjär kombination av X1, X2, en avlyssning och Y-värdena under de senaste fem perioderna. Obegränsad vektorautoregression För att modellera felvillkoren för en uppsättning ekvationer som en vektorautoregressiv process, använd följande form av AR-makroet efter ekvationerna: Processnamnvärdet är ett namn som du tillhandahåller för AR att använda för att skapa namn för den autoregressiva parametrar. Du kan använda AR-makroet för att modellera flera olika AR-processer för olika uppsättningar av ekvationer genom att använda olika processnamn för varje uppsättning. Processnamnet ser till att de använda variabla namnen är unika. Använd ett kort processnamnvärde för processen om parametervärden ska skrivas till en utdatasats. AR-makroen försöker konstruera parameternamn mindre än eller lika med åtta tecken, men detta är begränsat av längden på processnamnet. som används som prefix för AR-parameterns namn. Variabellistans värde är listan över endogena variabler för ekvationerna. Antag exempelvis att fel för ekvationerna Y1, Y2 och Y3 genereras av en andra ordningsvektor-autoregressiv process. Du kan använda följande påståenden: som genererar följande för Y1 och liknande kod för Y2 och Y3: Endast metoden med villkorlig minsta kvadrat (MCLS eller MCLS n) kan användas för vektorprocesser. Du kan också använda samma blankett med begränsningar att koefficientmatrisen är 0 vid valda lags. Till exempel tillämpar följande påståenden en tredje ordningens vektorprocess till ekvationsfel med alla koefficienterna vid lag 2 begränsad till 0 och med koefficienterna i lag 1 och 3 obegränsad: Du kan modellera de tre serierna Y1Y3 som en vektorautoregressiv process i variablerna istället för i fel genom att använda alternativet TYPEV. Om du vill modellera Y1Y3 som en funktion av tidigare värden av Y1Y3 och vissa exogena variabler eller konstanter, kan du använda AR för att generera uttalandena för lagtermerna. Skriv en ekvation för varje variabel för den ickeautoregressiva delen av modellen och ring sedan AR med alternativet TYPEV. Till exempel kan den ickeautoregressiva delen av modellen vara en funktion av exogena variabler, eller det kan vara avlyssna parametrar. Om det inte finns några exogena komponenter i vektorgrafikstyrningsmodellen, inklusive inga avlyssningar, tilldela noll till var och en av variablerna. Det måste finnas en uppgift till var och en av variablerna innan AR heter. Detta exempel modellerar vektorn Y (Y1 Y2 Y3) som en linjär funktion endast av dess värde under de föregående två perioderna och en vit brusfelvektor. Modellen har 18 parametrar (3 3 3 3). Syntax av AR-makro Det finns två fall av syntakten i AR-makroen. När restriktioner för en AR-vektor inte behövs, har syntakten i AR-makro den allmänna formen specificerar ett prefix för AR att använda för att konstruera namn på variabler som behövs för att definiera AR-processen. Om endolisten inte anges anges den endogena listan som namn. vilket måste vara namnet på ekvationen som AR-felprocessen ska tillämpas på. Namnvärdet får inte överstiga 32 tecken. är ordningen för AR-processen. specificerar listan över ekvationer som AR-processen ska tillämpas på. Om mer än ett namn ges, skapas en obegränsad vektorprocess med strukturella rester av alla ekvationer som ingår som regressorer i var och en av ekvationerna. Om inte specificerat, standardiseras endolist för att namnge. specificerar listan över lags där AR-termerna ska läggas till. Koefficienterna för termen vid listor som inte är listade är satt till 0. Alla listade lags måste vara mindre än eller lika med nlag. och det får inte finnas några duplikat. Om inte specificerat laglar laglistan till alla lag 1 till nlag. specificerar beräkningsmetoden som ska genomföras. Giltiga värden för M är CLS (beräknade minsta kvadrater), ULS (ovillkorliga minsta kvadrater uppskattningar) och ML (maximala sannolikhetsvärderingar). MCLS är standard. Endast MCLS tillåts när mer än en ekvation är angiven. ULS - och ML-metoderna stöds inte för vektor AR-modeller av AR. specificerar att AR-processen ska appliceras på de endogena variablerna istället för att de strukturella resterna av ekvationerna. Begränsad Vector Autoregression Du kan styra vilka parametrar som ingår i processen, vilket begränsar till 0 de parametrar som du inte inkluderar. Först använd AR med alternativet DEFER att deklarera variabelistan och definiera processens dimension. Använd sedan ytterligare AR-samtal för att generera termer för valda ekvationer med valda variabler i valda lags. De felaktigheter som produceras är till exempel följande: Den här modellen anger att felen för Y1 beror på felet i både Y1 och Y2 (men inte Y3) i båda lagren 1 och 2 och att felen för Y2 och Y3 beror på De tidigare felen för alla tre variablerna men endast i lag 1. AR Macro Syntax för begränsad vektor AR En alternativ användning av AR tillåts att införa restriktioner på en AR-vektorprocess genom att ringa AR flera gånger för att ange olika AR-termer och låter för olika ekvationer. Det första samtalet har den allmänna formen anger ett prefix för att AR ska kunna använda vid konstruktion av namn på variabler som behövs för att definiera vektor AR-processen. specificerar ordningen för AR-processen. specificerar listan över ekvationer som AR-processen ska tillämpas på. specificerar att AR inte ska generera AR-processen utan att vänta på ytterligare information som anges i senare AR-samtal för samma namnvärde. De efterföljande samtalen har den allmänna formen är densamma som i det första samtalet. specificerar listan över ekvationer som specifikationerna i detta AR-samtal ska tillämpas på. Endast namn som anges i endolistvärdet för det första samtalet för namnsvärdet kan visas i listan över ekvationer i eqlist. specificerar listan över ekvationer vars fördröjda konstruktionsrester ska inkluderas som regressorer i ekvationerna i eqlist. Endast namn i endolisten för det första samtalet för namnvärdet kan visas i varlist. Om inte specificerat, varla standardinställningar till endolist. specificerar listan över lags där AR-termerna ska läggas till. Koefficienterna för termen vid listor som inte är listade är satt till 0. Alla listade lags måste vara mindre än eller lika med värdet av nlag. och det får inte finnas några duplikat. Om inte specificerat, laglista standardvärdena till alla lag 1 till nlag. MA Macro SAS makro MA genererar programmeringsanvisningar för PROC MODEL för rörliga genomsnittsmodeller. MA-makroen är en del av SASETS-programvaran, och inga speciella alternativ behövs för att använda makroen. Felprocessen för glidande medel kan appliceras på strukturella ekvationsfel. Syntaxen för MA-makroen är densamma som AR-makroet, förutom att det inte finns något TYP-argument. När du använder MA och AR-makronen, måste MA-makroet följa AR-makro. Följande SASIML-satser ger en ARMA (1, (3)) felprocess och sparar den i datamängden MADAT2. Följande PROC MODEL-satser används för att uppskatta parametrarna för denna modell med hjälp av största sannolikhetsfelstruktur: Uppskattningarna av parametrarna som produceras av denna körning visas i Figur 18.61. Figur 18.61 Uppskattningar från en ARMA (1, (3)) Process Det finns två fall av syntaxen för MA-makro. När restriktioner på en vektor MA-process inte behövs har syntaxen i MA-makroen den allmänna formen specificerar ett prefix för MA att använda vid konstruktion av namn på variabler som behövs för att definiera MA-processen och är standardendolisten. är ordningen för MA-processen. specificerar ekvationerna som MA-processen ska tillämpas på. Om mer än ett namn ges, används CLS-estimering för vektorns process. specificerar lagren där MA-termerna ska läggas till. Alla listade lags måste vara mindre än eller lika med nlag. och det får inte finnas några duplikat. Om inte specificerat laglar laglistan till alla lag 1 till nlag. specificerar beräkningsmetoden som ska genomföras. Giltiga värden för M är CLS (beräknade minsta kvadrater), ULS (ovillkorliga minsta kvadrater uppskattningar) och ML (maximala sannolikhetsvärderingar). MCLS är standard. Endast MCLS tillåts när mer än en ekvation är specificerad i endolisten. MA Macro-syntax för begränsad vektor Flytta-medelvärde En alternativ användning av MA tillåts att införa restriktioner på en vektor MA-process genom att ringa MA flera gånger för att ange olika MA-termer och lags för olika ekvationer. Det första samtalet har den allmänna formen specificerar ett prefix för MA att använda vid konstruktion av namn på variabler som behövs för att definiera vektorn MA-processen. specificerar ordningen för MA-processen. specificerar listan över ekvationer som MA-processen ska tillämpas på. specificerar att MA inte ska generera MA-processen utan att vänta på ytterligare information som anges i senare MA-samtal för samma namnvärde. De efterföljande samtalen har den allmänna formen är densamma som i det första samtalet. specificerar listan över ekvationer som specifikationerna i detta MA-samtal ska tillämpas på. specificerar listan över ekvationer vars fördröjda konstruktionsrester ska inkluderas som regressorer i ekvationerna i eqlist. specificerar listan över lag som MA-termerna ska läggas till. Flyttning av medel och exponentiella utjämningsmodeller Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga promenadmodeller och linjära trendmodeller, icke-säsongsmönster och trender extrapoleras med hjälp av en rörelse - användning eller utjämningsmodell. Det grundläggande antagandet bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt (lokalt) medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Detta kan betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-without-drift-modellen. Samma strategi kan användas för att uppskatta och extrapolera en lokal trend. Ett rörligt medelvärde kallas ofta en quotsmoothedquot-version av den ursprungliga serien, eftersom kortsiktig medelvärde har en effekt att utjämna stötarna i originalserien. Genom att justera graden av utjämning (bredden på glidande medelvärdet) kan vi hoppas att hitta någon form av optimal balans mellan prestandan hos medel och slumpmässiga gångmodeller. Den enklaste typen av medelvärdesmodell är. Enkelt (lika viktat) Flyttande medelvärde: Prognosen för värdet på Y vid tiden t1 som görs vid tid t motsvarar det enkla medelvärdet av de senaste m-observationerna: (Här och på annat håll använder jag symbolen 8220Y-hat8221 för att stå för en prognos av tidsserie Y som gjordes så tidigt som möjligt enligt en given modell.) Detta medel är centrerat vid period-t (m1) 2, vilket innebär att uppskattningen av det lokala medelvärdet tenderar att ligga bakom den sanna värdet av det lokala medelvärdet med ca (m1) 2 perioder. Således säger vi att medelåldern för data i det enkla glidande medlet är (m1) 2 i förhållande till den period för vilken prognosen beräknas: det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkter i data . Om du till exempel medger de senaste 5 värdena, kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m1 är den enkla glidande genomsnittsmodellen (SMA) motsvarar den slumpmässiga gångmodellen (utan tillväxt). Om m är mycket stor (jämförbar med längden på uppskattningsperioden), motsvarar SMA-modellen den genomsnittliga modellen. Precis som med vilken parameter som helst av en prognosmodell, är det vanligt att justera värdet på k för att få den bästa kvotkvoten till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar utgöra slumpmässiga fluktuationer runt ett långsamt varierande medelvärde. Först kan vi försöka passa den med en slumpmässig promenadmodell, vilket motsvarar ett enkelt glidande medelvärde på 1 term: Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därmed väljer den mycket av kvotenhetskvoten i data (de slumpmässiga fluktuationerna) samt quotsignalquot (det lokala medelvärdet). Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser: Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga promenadmodellen i det här fallet. Medelåldern för data i denna prognos är 3 ((51) 2), så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. (Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare.) Notera att de långsiktiga prognoserna från SMA-modellen är en horisontell rak linje, precis som i slumpmässig promenad modell. Således antar SMA-modellen att det inte finns någon trend i data. Men medan prognoserna från den slumpmässiga promenadmodellen helt enkelt motsvarar det senast observerade värdet är prognoserna från SMA-modellen lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla glidande genomsnittet blir inte större eftersom prognostiseringshorisonten ökar. Det här är uppenbarligen inte korrekt Tyvärr finns det ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde utvidgas för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre tid. Du kan till exempel skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt etc. i det historiska dataprov. Därefter kan du beräkna felfunktionens avvikelser vid varje prognoshorisont och sedan konstruera konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar med lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt: Medelåldern är nu 5 perioder (91) 2). Om vi ​​tar ett 19-årigt glidande medel ökar medeltiden till 10: Observera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-siktsmedel: Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över 3 term och medellång sikt, och deras andra statistik är nästan identiska. Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. (Return to top of page.) Browns Enkel exponentiell utjämning (exponentiellt viktad glidande medelvärde) Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de sista k-observationerna lika och fullständigt ignorerar alla föregående observationer. Intuitivt bör tidigare data diskonteras på ett mer gradvis sätt - till exempel bör den senaste observationen få lite mer vikt än 2: a senast, och den 2: a senaste bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämningens (SES) - modellen åstadkommer detta. Låt 945 beteckna en quotsmoothing constantquot (ett tal mellan 0 och 1). Ett sätt att skriva modellen är att definiera en serie L som representerar den nuvarande nivån (dvs lokal medelvärde) för serien som uppskattad från data fram till idag. Värdet på L vid tid t beräknas rekursivt från sitt eget tidigare värde så här: Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där 945 styr närheten av det interpolerade värdet till det senaste observation. Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet: Likvärdigt kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner. I den första versionen är prognosen en interpolation mellan föregående prognos och tidigare observation: I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel av 945. Är felet gjort vid tid t. I den tredje versionen är prognosen ett exponentiellt vägt (dvs. rabatterat) glidande medelvärde med rabattfaktor 1-945: Interpolationsversionen av prognosformeln är det enklaste att använda om du genomför modellen på ett kalkylblad: det passar in i en encell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet 945 lagras. Observera att om 945 1 motsvarar SES-modellen en slumpmässig gångmodell (utan tillväxt). Om 945 0 motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet. (Återgå till början av sidan.) Medelåldern för data i prognosen för enkel exponentiell utjämning är 1 945 i förhållande till den period som prognosen beräknas för. (Det här är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie.) Den enkla, snabba genomsnittliga prognosen tenderar därför att ligga bakom vändpunkter med cirka 1 945 perioder. Till exempel, när 945 0,5 är fördröjningen 2 perioder när 945 0,2 är fördröjningen 5 perioder när 945 0,1 är fördröjningen 10 perioder, och så vidare. För en given genomsnittlig ålder (dvs mängden fördröjning) är prognosen för enkel exponentiell utjämning (SES) något överlägsen SMA-prognosen (Simple Moving Average) eftersom den lägger relativt större vikt vid den senaste observationen, dvs. det är något mer quotresponsivequot för förändringar som inträffade under det senaste förflutna. Exempelvis har en SMA-modell med 9 villkor och en SES-modell med 945 0,2 båda en genomsnittlig ålder på 5 för data i sina prognoser, men SES-modellen lägger mer vikt på de sista 3 värdena än SMA-modellen och vid Samtidigt gör det inte helt 8220forget8221 om värden som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som kontinuerligt varierar, så att den lätt kan optimeras genom att använda en kvotsolverquot-algoritm för att minimera medelkvadratfelet. Det optimala värdet på 945 i SES-modellen för denna serie visar sig vara 0,2961, som visas här: Medelåldern för data i denna prognos är 10,2961 3,4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är en horisontell rak linje. som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt. Observera dock att de konfidensintervaller som beräknas av Statgraphics avviker nu på ett rimligt sätt, och att de är väsentligt smalare än konfidensintervallen för slumpmässig promenadmodell. SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell. så ger den statistiska teorin om ARIMA-modeller en bra grund för beräkning av konfidensintervall för SES-modellen. I synnerhet är en SES-modell en ARIMA-modell med en icke-säsongsskillnad, en MA (1) term och ingen konstant term. annars känd som en quotARIMA (0,1,1) modell utan constantquot. MA (1) - koefficienten i ARIMA-modellen motsvarar kvantiteten 1-945 i SES-modellen. Om du till exempel passar en ARIMA (0,1,1) modell utan konstant till serien som analyseras här, visar den uppskattade MA (1) - koefficienten sig att vara 0.7029, vilket är nästan exakt en minus 0,2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend till en SES-modell. För att göra detta, ange bara en ARIMA-modell med en icke-sekundär skillnad och en MA (1) term med en konstant, dvs en ARIMA (0,1,1) modell med konstant. De långsiktiga prognoserna kommer då att ha en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Det går inte att göra detta i samband med säsongjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant långsiktig exponentiell trend för en enkel exponentiell utjämningsmodell (med eller utan säsongsjustering) genom att använda inflationsjusteringsalternativet i prognosproceduren. Den lämpliga quotinflationen (procentuell tillväxt) per period kan beräknas som lutningskoefficienten i en linjär trendmodell som är anpassad till data i samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter . (Återgå till början av sidan.) Browns Linear (ie double) Exponentiell utjämning SMA-modellerna och SES-modellerna antar att det inte finns någon trend av något slag i data (vilket vanligtvis är OK eller åtminstone inte för dåligt för 1- stegprognoser när data är relativt bullriga), och de kan modifieras för att införliva en konstant linjär trend som visas ovan. Vad sägs om kortsiktiga trender Om en serie visar en växande tillväxt eller ett cykliskt mönster som står klart ut mot bruset, och om det finns behov av att prognostisera mer än en period framåt, kan uppskattningen av en lokal trend också vara en fråga. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning (LES) - modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trendmodellen är Browns linjära exponentiell utjämningsmodell, som använder två olika slätmade serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centra. (En mer sofistikerad version av denna modell, Holt8217s, diskuteras nedan.) Den algebraiska formen av Brown8217s linjär exponentiell utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men likvärdiga former. Den här kvotens kvotstandardkvot uttrycks vanligtvis enligt följande: Låt S beteckna den singeljämnade serien som erhållits genom att applicera enkel exponentiell utjämning till serie Y. Dvs, värdet på S vid period t ges av: (Minns att, under enkel exponentiell utjämning, detta skulle vara prognosen för Y vid period t1.) Låt sedan Squot beteckna den dubbelsidiga serien erhållen genom att applicera enkel exponentiell utjämning (med samma 945) till serie S: Slutligen prognosen för Y tk. för vilken kgt1 som helst, ges av: Detta ger e 1 0 (det vill säga lura lite och låt den första prognosen motsvara den faktiska första observationen) och e 2 Y 2 8211 Y 1. varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden som formeln baserad på S och S om de senare startades med användning av S1S1Y1. Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Holt8217s linjär exponentiell utjämning Brown8217s LES-modell beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer in en begränsning av de datamönster som den kan passa: nivån och trenden får inte variera till oberoende priser. Holt8217s LES-modell adresserar problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown8217s modell, finns det en uppskattning L t på lokal nivå och en uppskattning T t av den lokala trenden. Här rekryteras de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som applicerar exponentiell utjämning till dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L t82091 och T t-1. respektive prognosen för Y tshy som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1. När det verkliga värdet observeras beräknas den uppdaterade uppskattningen av nivån rekursivt genom interpolering mellan Y tshy och dess prognos L t-1 T t 1 med vikter av 945 och 1- 945. Förändringen i beräknad nivå, nämligen L t 8209 L t82091. kan tolkas som en bullrig mätning av trenden vid tiden t. Den uppdaterade uppskattningen av trenden beräknas sedan rekursivt genom interpolering mellan L t 8209 L t82091 och den tidigare uppskattningen av trenden T t-1. Användning av vikter av 946 och 1-946: Tolkningen av trendutjämningskonstanten 946 är analog med den för nivåutjämningskonstanten 945. Modeller med små värden av 946 förutsätter att trenden ändras endast mycket långsamt över tiden, medan modeller med större 946 antar att det förändras snabbare. En modell med en stor 946 tror att den avlägsna framtiden är väldigt osäker, eftersom fel i trendberäkning blir ganska viktiga vid prognoser mer än en period framåt. (Återgå till början av sidan.) Utjämningskonstanterna 945 och 946 kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 945 0.3048 och 946 0.008. Det mycket lilla värdet av 946 innebär att modellen antar mycket liten förändring i trenden från en period till nästa, så i grunden försöker denna modell att uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används för att uppskatta den lokala nivån i serien, är medelåldern för de data som används för att uppskatta den lokala trenden proportionell mot 1 946, men inte exakt lika med den . I detta fall visar det sig att vara 10.006 125. Detta är ett mycket exakt nummer eftersom precisionen av uppskattningen av 946 är verkligen 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att beräkna trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som beräknas i SEStrend-modellen. Det uppskattade värdet på 945 är också nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend, så det är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som beräknas beräkna en lokal trend. Om du 8220eyeball8221 ser det här, ser det ut som om den lokala trenden har vänt sig nedåt i slutet av serien. Vad har hänt Parametrarna i denna modell har uppskattats genom att minimera det kvadrerade felet i 1-stegs-prognoser, inte längre prognoser, i vilket fall trenden gör det inte mycket skillnad. Om allt du tittar på är 1 steg framåt, ser du inte den större bilden av trender över (säg) 10 eller 20 perioder. För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den använder en kortare baslinje för trendberäkning. Om vi ​​till exempel väljer att ställa in 946 0,1, är medelåldern för de data som används vid uppskattning av den lokala trenden 10 perioder, vilket innebär att vi medeltar trenden över de senaste 20 perioderna eller så. Here8217s hur prognosplotet ser ut om vi sätter 946 0,1 medan ni håller 945 0.3. Detta ser intuitivt rimligt ut för denna serie, men det är troligen farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad sägs om felstatistik Här är en modelljämförelse för de två modellerna ovan och tre SES-modeller. Det optimala värdet på 945. För SES-modellen är ungefär 0,3, men liknande resultat (med något mer eller mindre responsivitet) erhålls med 0,5 och 0,2. (A) Hål linjär exp. utjämning med alfa 0,3048 och beta 0,008 (B) Hål linjär exp. utjämning med alfa 0,3 och beta 0,1 (C) Enkel exponentiell utjämning med alfa 0,5 (D) Enkel exponentiell utjämning med alfa 0,3 (E) Enkel exponentiell utjämning med alfa 0,2 Deras statistik är nästan identisk, så vi kan verkligen göra valet på grundval av prognosfel i 1 steg före proverna. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera den nuvarande trendberäkningen på vad som hänt under de senaste 20 perioderna eller så kan vi göra ett ärende för LES-modellen med 945 0,3 och 946 0,1. Om vi ​​vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna vara enklare att förklara och skulle också ge fler mitten av vägtrafikprognoserna för de kommande 5 eller 10 perioderna. (Tillbaka till början av sidan.) Vilken typ av trend-extrapolation är bäst: Horisontell eller linjär Empiriska bevis tyder på att om uppgifterna redan har justerats (om det behövs) för inflationen, kan det vara osäkert att extrapolera kortsiktiga linjära trender mycket långt in i framtiden. Tendenser som uppenbaras idag kan sänkas i framtiden på grund av olika orsaker som produktförstörelse, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Av denna anledning utför enkel exponentiell utjämning ofta bättre utom provet än vad som annars skulle kunna förväntas, trots sin kvotiv kvot horisontell trend extrapolering. Dämpade trendmodifieringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i sina trendprognoser. Den demoniserade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA-modell (1,1,2). Det är möjligt att beräkna konfidensintervaller kring långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller. (Var försiktig: inte alla mjukvaror beräknar konfidensintervall för dessa modeller korrekt.) Bredden på konfidensintervallet beror på (i) modellens RMS-fel, (ii) utjämningstypen (enkel eller linjär) (iii) värdet (er) av utjämningskonstanten (erna) och (iv) antalet perioder framåt du prognoserar. I allmänhet sprids intervallet snabbare, eftersom 945 blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används. Detta ämne diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. (Återgå till början av sidan.) 2.1 Flytta genomsnittsmodeller (MA modeller) Tidsseriemodeller som kallas ARIMA-modeller kan innefatta autoregressiva termer och eller rörliga genomsnittsvillkor. I vecka 1 lärde vi oss en autoregressiv term i en tidsseriemodell för variabeln x t är ett fördröjt värde av x t. Till exempel är en lag 1-autoregressiv term x t-1 (multiplicerad med en koefficient). Denna lektion definierar glidande medelvärden. En glidande medelfrist i en tidsseriemodell är ett tidigare fel (multiplicerat med en koefficient). Låt (wt overset N (0, sigma2w)), vilket betyder att wt är identiskt oberoende fördelat, var och en med en normal fördelning med medelvärde 0 och samma varians. Den första ordningens rörliga genomsnittsmodell, betecknad med MA (1) är (xt mu wt theta1w) Den andra ordens rörliga genomsnittsmodellen, betecknad med MA (2) är (xt mu wt theta1w theta2w) , betecknad med MA (q) är (xt mu wt theta1w theta2w punkter thetaqw) Not. Många läroböcker och programvara definierar modellen med negativa tecken före villkoren. Detta ändrar inte de allmänna teoretiska egenskaperna hos modellen, även om den vrider de algebraiska tecknen på uppskattade koefficientvärden och (unsquared) termer i formler för ACF och variationer. Du måste kontrollera din programvara för att kontrollera om negativa eller positiva tecken har använts för att korrekt beräkna den beräknade modellen. R använder positiva tecken i sin underliggande modell, som vi gör här. Teoretiska egenskaper hos en tidsserie med en MA (1) modell Observera att det enda nonzero-värdet i teoretisk ACF är för lag 1. Alla andra autokorrelationer är 0. Således är ett prov ACF med en signifikant autokorrelation endast vid lag 1 en indikator på en möjlig MA (1) modell. För intresserade studenter är bevis på dessa egenskaper en bilaga till denna handout. Exempel 1 Antag att en MA (1) modell är x t10 w t .7 w t-1. var (överskridande N (0,1)). Således är koefficienten 1 0,7. Den teoretiska ACF ges av En plot av denna ACF följer. Den visade ploten är den teoretiska ACF för en MA (1) med 1 0,7. I praktiken ger ett prov vanligen vanligtvis ett så tydligt mönster. Med hjälp av R simulerade vi n 100 provvärden med hjälp av modellen x t 10 w t .7 w t-1 där vikt N (0,1). För denna simulering följer en tidsserieplot av provdata. Vi kan inte berätta mycket från denna plot. Provet ACF för den simulerade data följer. Vi ser en spik vid lag 1 följt av allmänt icke-signifikanta värden för lags över 1. Observera att provet ACF inte matchar det teoretiska mönstret för den underliggande MA (1), vilket är att alla autokorrelationer för lags över 1 kommer att vara 0 . Ett annat prov skulle ha ett något annorlunda prov ACF som visas nedan, men skulle troligen ha samma breda funktioner. Terapeutiska egenskaper för en tidsreaktion med en MA (2) modell För MA (2) modellen är teoretiska egenskaper följande: Observera att de enda nonzero-värdena i teoretisk ACF är för lags 1 och 2. Autokorrelationer för högre lags är 0 . En ACF med signifikanta autokorrelationer vid lags 1 och 2, men icke-signifikanta autokorrelationer för högre lags indikerar en möjlig MA (2) modell. iid N (0,1). Koefficienterna är 1 0,5 och 2 0,3. Eftersom det här är en MA (2), kommer den teoretiska ACF endast att ha nonzero-värden endast på lags 1 och 2. Värdena för de två icke-oberoende autokorrelationerna är A-plot av den teoretiska ACF följer. Såsom nästan alltid är fallet kommer provdata inte att verka så perfekt som teori. Vi simulerade n 150 provvärden för modellen x t 10 w t .5 w t-1 .3 w t-2. var vet N (0,1). Tidsserierna av data följer. Som med tidsserien för MA (1) provdata kan du inte berätta mycket för det. Provet ACF för den simulerade data följer. Mönstret är typiskt för situationer där en MA (2) modell kan vara användbar. Det finns två statistiskt signifikanta spikar vid lags 1 och 2 följt av icke-signifikanta värden för andra lags. Observera att provet ACF på grund av provtagningsfel inte exakt matchade det teoretiska mönstret. ACF för General MA (q) Modeller En egenskap hos MA (q) modeller är generellt att det finns icke-oberoende autokorrelationer för de första q-lagsna och autokorrelationerna 0 för alla lags gt q. Icke-unikhet av koppling mellan värden på 1 och (rho1) i MA (1) Modell. I MA (1) - modellen, för något värde av 1. den ömsesidiga 1 1 ger samma värde. Använd exempelvis 0,5 för 1. och använd sedan 1 (0,5) 2 för 1. Du får (rho1) 0,4 i båda fallen. För att tillfredsställa en teoretisk restriktion kallad invertibility. vi begränsar MA (1) - modellerna till att ha värden med absolutvärdet mindre än 1. I exemplet just givet är 1 0,5 ett tillåtet parametervärde, medan 1 10,5 2 inte kommer att. Omvändbarhet av MA-modeller En MA-modell sägs vara omvändbar om den är algebraiskt ekvivalent med en konvergerande oändlig ordning AR-modell. Genom att konvergera menar vi att AR-koefficienterna minskar till 0 när vi flyttar tillbaka i tiden. Omvändbarhet är en begränsning programmerad i tidsserieprogramvara som används för att uppskatta koefficienterna för modeller med MA-termer. Det är inte något vi söker efter i dataanalysen. Ytterligare information om invertibilitetsbegränsningen för MA (1) - modeller ges i bilagan. Avancerad teorinotation. För en MA (q) modell med en specificerad ACF finns det bara en inverterbar modell. Det nödvändiga villkoret för invertibilitet är att koefficienterna har värden så att ekvationen 1- 1 y-. - q y q 0 har lösningar för y som faller utanför enhetens cirkel. R-kod för exemplen I exempel 1 ritade vi den teoretiska ACF av modellen x t10 wt. 7w t-1. och sedan simulerade n 150 värden från denna modell och plottade provets tidsserie och provet ACF för de simulerade data. R-kommandon som användes för att plotta den teoretiska ACF var: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags av ACF för MA (1) med theta1 0,7 lags0: 10 skapar en variabel som heter lags som sträcker sig från 0 till 10. plot (lags, acfma1, xlimc (1,10), ylabr, typh, huvud ACF för MA (1) med theta1 0,7) abline (h0) adderar en horisontell axel till plottet Det första kommandot bestämmer ACF och lagrar det i ett objekt namnet acfma1 (vårt val av namn). Plot-kommandot (det tredje kommandot) plottar jämfört med ACF-värdena för lags 1 till 10. ylab-parametern markerar y-axeln och huvudparametern lägger en titel på plotten. För att se de numeriska värdena för ACF använder du bara kommandot acfma1. Simuleringen och diagrammen gjordes med följande kommandon. xcarima. sim (n150, lista (mac (0.7))) Simulerar n 150 värden från MA (1) xxc10 lägger till 10 för att göra medelvärdet 10. Simulering standardvärden betyder 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF för simulerad provdata) I exempel 2 ritade vi den teoretiska ACF av modellen xt 10 wt5 w t-1, 3 w t-2. och sedan simulerade n 150 värden från denna modell och plottade provets tidsserie och provet ACF för de simulerade data. De R-kommandon som användes var acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (lags, acfma2, xlimc (1,10), ylabr, typh, huvud ACF för MA (2) med theta1 0,5, theta20.3) abline (h0) xcarima. sim (n150, lista (mac (0,5, 0,3)) xxc10 plot (x, typeb, huvudsimulerad MA (2) serie) acf (x, xlimc (1,10) mainACF för simulerade MA (2) data) Bilaga: Bevis på egenskaper hos MA (1) För intresserade studenter, här är bevis för teoretiska egenskaper hos MA (1) modellen. Varians: (text (xt) text (mu wt theta1 w) 0 text (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) När h 1, föregående uttryck 1 w 2. För varje h 2, föregående uttryck 0 . Orsaken är att, per definition av vägtons oberoende. E (w k w j) 0 för någon k j. Vidare, eftersom w t har medelvärdet 0, E (w jw j) E (wj 2) w 2. För en tidsserie, Applicera detta resultat för att få ACF ges ovan. En inverterbar MA-modell är en som kan skrivas som en oändlig ordning AR-modell som konvergerar så att AR-koefficienterna konvergerar till 0 när vi rör sig oändligt tillbaka i tiden. Visa väl omvändbarhet för MA (1) modellen. Vi ersätter sedan förhållandet (2) för w t-1 i ekvation (1) (3) (zt wt theta1 (z-tetww) wt theta1z-tetanw) Vid tid t-2. ekvationen (2) blir Vi ersätter sedan förhållandet (4) för w t-2 i ekvation (3) (zt wt theta1z-teteta21wt theta1z-teteta21 (z-tetww) wt theta1z-teteta12z theta31w) Om vi ​​skulle fortsätta oändligt) skulle vi få oändlig ordning AR-modellen (zt wt theta1z-theta21z theta31z-tetta41z punkter) Observera dock att om koefficienterna som multiplicerar lagren av z ökar (oändligt) i storlek när vi flyttar tillbaka i tid. För att förhindra detta behöver vi 1 lt1. Detta är förutsättningen för en inverterbar MA (1) modell. Oändlig ordning MA-modell I vecka 3 ser du att en AR (1) - modell kan konverteras till en oändlig ordning MA-modell: (xt - mu wt phi1w phi21w prickar phik1 w dots sum phij1w) Denna summering av tidigare vita ljudvillkor är känd som orsakssammanställning av en AR (1). Med andra ord är x t en special typ av MA med ett oändligt antal termer som går tillbaka i tiden. Detta kallas en oändlig ordning MA eller MA (). En ändlig ordning MA är en oändlig ordning AR och någon ändlös ordning AR är en oändlig ordning MA. Minns i vecka 1 noterade vi att ett krav på en stationär AR (1) är att 1 lt1. Låt beräkna Var (x t) med hjälp av kausalrepresentationen. Det här sista steget använder ett grundläggande faktum om geometriska serier som kräver (phi1lt1) annars skiljer serien. Navigering

Comments